%I
%S 1,1,2,4,11,31,86,246,736,2276,7240,22690,72285,234747,771123,2566400,
%T 8493635,28334539,95604553,324278488,1108220193,3778047729,
%U 12939669749,44644265673,154504166115,537300462031,1866279782528,6502091763142,22768475794159,79893282232247,281289871201986,989741714280930
%N Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(1, 1, 0), (1, 1, 1), (0, 0, 1), (1, 0, 0)}
%H A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, <a href="http://arxiv.org/abs/0811.2899">ArXiv 0811.2899</a>.
%t aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0  Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[1 + i, j, k, 1 + n] + aux[i, j, 1 + k, 1 + n] + aux[1 + i, 1 + j, 1 + k, 1 + n] + aux[1 + i, 1 + j, k, 1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}]
%K nonn,walk
%O 0,3
%A _Manuel Kauers_, Nov 18 2008
