ResNet (34, 50, 101): «остаточные» CNN для классификации изображений

29 января 2019
resnet-neural-network

ResNet (34, 50, 101): «остаточные» CNN для классификации изображений

ResNet — это сокращенное название для Residual Network (дословно  — «остаточная сеть»), но что такое residual learning («остаточное обучение»)? Глубокие сверточные нейронные сети превзошли человеческий уровень классификации изображений в 2015…

CycleGAN: превращение текстур Fortnite в PUBG

18 января 2019
cyclegan

CycleGAN: превращение текстур Fortnite в PUBG

Перед вами перевод статьи о применении CycleGAN для переноса стиля изображений и дальнейшего применения в компьютерных играх. Автор статьи — Чинтан Триведи, ссылка на оригинал в конце текста. Если вы…

U-Net: нейросеть для сегментации изображений

30 ноября 2018
u-net

U-Net: нейросеть для сегментации изображений

U-Net считается одной из стандартных архитектур CNN для задач сегментации изображений, когда нужно не только определить класс изображения целиком, но и сегментировать его области по классу, т. е. создать маску,…

VGG16 — сверточная сеть для выделения признаков изображений

23 ноября 2018
vgg16 нейронная сеть

VGG16 — сверточная сеть для выделения признаков изображений

VGG16 — модель сверточной нейронной сети, предложенная K. Simonyan и A. Zisserman из Оксфордского университета в статье “Very Deep Convolutional Networks for Large-Scale Image Recognition”. Модель достигает точности 92.7% —…

AlexNet — свёрточная нейронная сеть для классификации изображений

1 ноября 2018

AlexNet — свёрточная нейронная сеть для классификации изображений

AlexNet — сверточная нейронная сеть, которая оказала большое влияние на развитие машинного обучения, в особенности — на алгоритмы компьютерного зрения. Сеть с большим отрывом выиграла конкурс по распознаванию изображений ImageNet LSVRC-2012…