CrypTen: инструмент для обучения моделей на зашифрованных данных

15 октября 2019

CrypTen: инструмент для обучения моделей на зашифрованных данных

CrypTen — это обертка над PyTorch для обучения нейросетевых моделей на зашифрованных данных. Это снимает ограничения в использовании PyTorch в задачах, где секретность данных приоритетна. Несмотря на прогресс в обучении…

BaaL: библиотека для байесовского активного обучения от ElementAI

15 октября 2019

BaaL: библиотека для байесовского активного обучения от ElementAI

BaaL — это библиотека для байесовского активного обучения. Активное обучение  Разработкой библиотеки занимались в ElementAI. Что такое активное обучение Задачи машинного обучения обычно требуют значительных объемов данных для обучения. Для…

Hydra: фреймворк для разработки приложений Python

14 октября 2019

Hydra: фреймворк для разработки приложений Python

Facebook опубликовали фреймворк для разработки приложений на Python, — Hydra. Python является наиболее популярным языком для обучения нейросетевых моделей. Hydra может быть полезен для прототипирования приложений с использование нейросетей. В…

Detectron2: библиотека для распознавания объектов от FAIR

12 октября 2019

Detectron2: библиотека для распознавания объектов от FAIR

FAIR опубликовали Pytorch библиотеку для распознавания объектов Detectron2. В новой версии библиотеки появились модульный дизайн, имплементации state-of-the-art моделей, поддержка обучения моделей на нескольких GPU серверах и функционал для использования модели…

Популярность PyTorch в среднем выросла на 243% за год

11 октября 2019

Популярность PyTorch в среднем выросла на 243% за год

Исследователи из The Gradient опубликовали сравнительное исследование популярности фреймворков PyTorch и TensorFlow. Исследование основывается на данных крупных ML-конференций: CVPR, NAACL, ACL, ICLR, ICML и др. Использование PyTorch в среднем выросло…

Google опубликовали финальную версию Tensorflow 2.0

1 октября 2019

Google опубликовали финальную версию Tensorflow 2.0

TensorFlow 2.0 — это более гибкий фреймворк для обучения ML-моделей от Google. Он основан на высокоуровневой библиотеке над TensorFlow 1.x, — Keras. Ключевые отличия новой версии заключаются в дефолтных eager…

Tensorpack: быстрый интерфейс для обучения нейросетей на TensorFlow

28 июля 2019

Tensorpack: быстрый интерфейс для обучения нейросетей на TensorFlow

Tensorpack — это интерфейс для обучения нейронных моделей, который основан на TensorFlow. Обучение моделей на Tensorpack занимает в 1.2-5 раза меньше времени, чем на Keras, оригинальной высокоуровневой библиотеке на TensorFlow. …

Google выпустили дополнения к Tensorflow Object Detection API

20 июля 2018
tensprflow detection api

Google выпустили дополнения к Tensorflow Object Detection API

Обновления включают новые модели класса SSD, которые оптимизированы для ускоренного обучения на облачных TPU, и готовые веса для них. Теперь обучение модели RetinaNet на основе ResNet-50 на датасете COCO для…

Введение в TensorFlow Hub: библиотеку модулей машинного обучения для TensorFlow

14 июля 2018
tensorflow hub библиотека

Введение в TensorFlow Hub: библиотеку модулей машинного обучения для TensorFlow

Репозиторий с общим кодом — одна из фундаментальных идей в разработке программного обеспечения. Библиотеки делают программистов гораздо более эффективными. В некотором смысле они даже меняют сам процесс решения проблем программирования. Как выглядит…